What is a Pandemic?

A pandemic is a global outbreak of disease that occurs when a new virus appears or “emerges” in the human population, causes serious illness, and then spreads easily from person to person worldwide. Pandemics are different from seasonal outbreaks or “epidemics” of influenza. Seasonal outbreaks are caused by subtypes of influenza viruses that already circulate among people, whereas pandemic outbreaks are caused by new subtypes, by subtypes that have never circulated among people, or by subtypes that have not circulated among people for a long time. Past pandemics have led to high levels of illness, death, social disruption, and economic loss.

Appearance (Emergence) of Pandemic Influenza Viruses

There are many different subtypes of Influenza or “flu” viruses. The subtypes differ based upon certain proteins on the surface of the virus (the hemagglutinin or “HA” protein and the neuraminidase or the “NA” protein).

Pandemic viruses emerge as a result of a process called “antigenic shift,” which causes an abrupt or sudden, major change in influenza A viruses. These changes are caused by new combinations of the HA and/or NA proteins on the surface of the virus. Changes result in a new influenza A virus subtype. The appearance of a new influenza A virus subtype is the first step toward a pandemic; however, to cause a pandemic, the new virus subtype also must have the capacity to spread easily from person to person. Once a new pandemic influenza virus emerges and spreads, it usually becomes established among people and moves around or “circulates” for many years as seasonal epidemics of influenza. The U.S. Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) have large surveillance programs to monitor and detect influenza activity around the world, including the emergence of possible pandemic strains of influenza virus.

Influenza Pandemics during the 20th Century

During the 20th century, the emergence of several new influenza A virus subtypes caused three pandemics, all of which spread around the world within a year of being detected.

- 1918-19, "Spanish flu," [A (H1N1)], caused the highest number of known influenza deaths. (However, the actual influenza virus subtype was not detected in the 1918-19 pandemic). More than 500,000 people died in the United States, and up to 50 million people may have died worldwide. Many people died within the first few days after infection, and others died of secondary complications. Nearly half of those who died were young, healthy adults. Influenza A (H1N1) viruses still circulate today after being introduced again into the human population in 1977.

- 1968-69, "Hong Kong flu," [A (H3N2)], caused about 34,000 deaths in the United States. This virus was first detected in Hong Kong in early 1968 and spread to the United States later that year. Influenza A (H3N2) viruses still circulate today.

Both the 1957-58 and 1968-69 pandemics were caused by viruses containing a combination of genes from a human influenza virus and an avian influenza virus. The 1918-19 pandemic virus appears to have an avian origin.
Stages of a Pandemic
WHO has developed a global influenza preparedness plan, which defines the stages of a pandemic, outlines the role of WHO, and makes recommendations for national measures before and during a pandemic. The phases are:

Interpandemic period

Phase 1: No new influenza virus subtypes have been detected in humans. An influenza virus subtype that has caused human infection may be present in animals. If present in animals, the risk of human infection or disease is considered to be low.

Phase 2: No new influenza virus subtypes have been detected in humans. However, a circulating animal influenza virus subtype poses a substantial risk of human disease.

Pandemic alert period

Phase 3: Human infection(s) with a new subtype, but no human-to-human spread, or at most rare instances of spread to a close contact.

Phase 4: Small cluster(s) with limited human-to-human transmission but spread is highly localized, suggesting that the virus is not well adapted to humans.

Phase 5: Larger cluster(s) but human-to-human spread still localized, suggesting that the virus is becoming increasingly better adapted to humans but may not yet be fully transmissible (substantial pandemic risk).

Pandemic period

Phase 6: Pandemic: increased and sustained transmission in general population.

Notes: The distinction between phases 1 and 2 is based on the risk of human infection or disease resulting from circulating strains in animals. The distinction is based on various factors and their relative importance according to current scientific knowledge. Factors may include pathogenicity in animals and humans, occurrence in domesticated animals and livestock or only in wildlife, whether the virus is enzootic or epizootic, geographically localized or widespread, and other scientific parameters.

The distinction among phases 3 and 4 is based on an assessment of the risk of a pandemic. Various factors and their relative importance according to current scientific knowledge may be considered. Factors may include rate of transmission, geographical location and spread, severity of illness, presence of genes from human strains (if derived from an animal strain), and other scientific parameters.

Vaccines to Protect Against Pandemic Influenza Viruses
A vaccine probably would not be available in the early stages of a pandemic. When a new vaccine against an influenza virus is being developed, scientists around the world work together to select the virus strain that will offer the best protection against that virus. Manufacturers then use the selected strain to develop a vaccine. Once a potential pandemic strain of influenza virus is identified, it takes several months before a vaccine will be widely available. If a pandemic occurs, the U.S. government will work with many partner groups to make recommendations guiding the early use of available vaccine.
Antiviral Medications to Prevent and Treat Pandemic Influenza

Four different influenza antiviral medications (amantadine, rimantadine, oseltamivir, and zanamivir) are approved by the U.S. Food and Drug Administration (FDA) for the treatment and/or prevention of influenza. All four usually work against influenza A viruses. However, the drugs may not always work, because influenza virus strains can become resistant to one or more of these medications. For example, the influenza A (H5N1) viruses identified in human in Asia in 2004 and 2005 have been resistant to amantadine and rimantadine. Monitoring of avian viruses for resistance to influenza antiviral medications continues.

Preparing for the Next Pandemic

Many scientists believe it is only a matter of time until the next influenza pandemic occurs. The severity of the next pandemic cannot be predicted, but modeling studies suggest that the impact of a pandemic on the United States could be substantial. In the absence of any control measures (vaccination or drugs), it has been estimated that in the United States a “medium-level” pandemic could cause 89,000 to 207,000 deaths, 314,000 and 734,000 hospitalizations, 18 to 42 million outpatient visits, and another 20 to 47 million people being sick. Between 15% and 35% of the U.S. population could be affected by an influenza pandemic, and the economic impact could range between $71.3 and $166.5 billion.

Influenza pandemics are different from many of the threats for which public health and health-care systems are currently planning:

- A pandemic will last much longer than most public health emergencies and may include “waves” of influenza activity separated by months (in 20th century pandemics, a second wave of influenza activity occurred 3 to 12 months after the first wave).
- The numbers of health-care workers and first responders available to work can be expected to be reduced. They will be at high risk of illness through exposure in the community and in health-care settings, and some may have to miss work to care for ill family members.
- Resources in many locations could be limited, depending on the severity and spread of an influenza pandemic.

Because of these differences and the expected size of an influenza pandemic, it is important to plan preparedness activities that will permit a prompt and effective public health response at all levels of Government. The PA Department of Health supports pandemic influenza activities in the areas of surveillance (detection), vaccine distribution, strategic stockpiling, research, and risk communications. This unified initiative involves CDC and many other agencies (international, national, state, local and private) in planning for a potential pandemic.